

DETERMINAÇÃO DE COORDENADAS TRIDIMENSIONAIS MÉTODO MULTIPOLAR DO PONTO MÉDIO

- Engenheiros cartógrafos:
Msc. Diego de Oliveira Martins (diegoolimartins@usp.br)
Sérgio Roberto de Oliveira (sergio.r.oliveira@usp.br)
- Supervisão: Professor Dr. Irineu da Silva - Laboratório de Geomática - Departamento de Engenharia de Transportes (EESC/USP)

A determinação de coordenadas tridimensionais sempre foi uma operação laboriosa, que exige cuidado e experiência do operador no campo. Com o advento das estações totais com capacidade de medição sem prisma, essa operação foi facilitada, porém, não totalmente resolvida, uma vez que existem situações em que a dimensão do objeto ou a precisão almejada não permite o uso desse tipo de medição. Para esses casos é necessário recorrer as medições estritamente angulares, com o uso simultâneo de dois instrumentos instalados sobre dois pontos de coordenadas conhecidas. A esse respeito existem alguns métodos de medição conhecidos na literatura, que se baseiam nas medições angulares horizontais e verticais entre, pelo menos dois teodolitos ou estações totais (A e B), e o ponto (P) a ser determinado, conforme indicado na Figura 1.

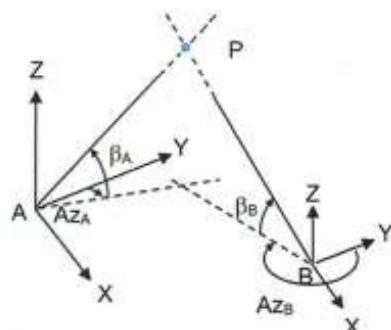


Figura 1 Interseção espacial.

A inconsistência desses métodos é o fato das observações angulares não garantirem a interseção das visadas exatamente sobre o ponto (P), exigindo assim que se façam algumas suposições geométricas para acomodar o modelo físico ao modelo matemático. Nestas circunstâncias, a solução apresentada por Allan (1996) permite determinar as coordenadas do ponto (P) de maneira simples e matematicamente consistente. Conforme apresentado na sequência, ela se baseia na suposição de que o ponto (P) se situa na mediana da perpendicular comum entre as duas visadas que partem das estações (A) e (B), conforme indicado na Figura 2.

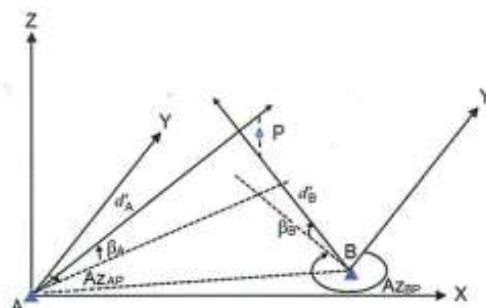


Figura 2 Método do Ponto Médio.

De acordo com a figura, tem-se:

Az_{AP}, Az_{BP} = azimutes conhecidos das visadas AP e BP, calculados em função das coordenadas das estações (A) e (B) e das direções das visadas observadas a partir de cada estação.

β_A, β_B = ângulos verticais observados entre as estações (A) e (B) e o ponto (P)

d'_A, d'_B = distâncias a serem determinadas entre as estações (A) e (B) e o ponto (P) visado

A sequência de cálculo para a determinação das coordenadas tridimensionais do ponto médio (P) estão apresentadas a seguir. Os leitores interessados nos desenvolvimentos matemáticos do método são encorajados a consultar o artigo indicado na bibliografia. Assim, tem-se:

$$a_A = \cos(\beta_A) \times \operatorname{sen}(Az_{AP}) \quad a_B = \cos(\beta_B) \times \operatorname{sen}(Az_{BP}) \quad (1)$$

$$b_A = \cos(\beta_A) \times \cos(Az_{AP}) \quad b_B = \cos(\beta_B) \times \cos(Az_{BP}) \quad (2)$$

$$c_A = \operatorname{sen}(\beta_A) \quad c_B = \operatorname{sen}(\beta_B) \quad (3)$$

$$\cos\gamma = a_A \times a_B + b_A \times b_B + c_A \times c_B \quad (4)$$

$$\operatorname{sen}^2\gamma = 1 - \cos^2\gamma \quad (5)$$

$$p = a_A \times \Delta X_{AB} + b_A \times \Delta Y_{AB} + c_A \times \Delta Z_{AB} \quad (6)$$

$$q = a_B \times \Delta X_{AB} + b_B \times \Delta Y_{AB} + c_B \times \Delta Z_{AB} \quad (7)$$

De onde se obtém:

$$d'_A = \frac{(p - q \times \cos\gamma)}{\operatorname{sen}^2\gamma} \quad (8)$$

$$d'_B = q - d'_A \times \cos\gamma \quad (9)$$

Considerando que as coordenadas dos pontos (A) e (B) são conhecidas e iguais a (X_A, Y_A, Z_A) e (X_B, Y_B, Z_B) e, que as distâncias inclinadas entre os pontos (A), (B) e (P) são iguais a (d'_A) e (d'_B) , respectivamente, tem-se as coordenadas do ponto (P) determinadas a partir dos ponto (A) e (B), conforme indicado a seguir:

$$X_{PA} = X_A + a_A \times d'_A \quad X_{PB} = X_B + a_B \times d'_B \quad (10)$$

$$Y_{PA} = Y_A + b_A \times d'_A \quad Y_{PB} = Y_B + b_B \times d'_B \quad (11)$$

$$Z_{PA} = Z_A + c_A \times d'_A \quad Z_{PB} = Z_B + c_B \times d'_B \quad (12)$$

As coordenadas ajustadas do ponto (P) são calculadas pela média aritmética ou ponderada das coordenadas individuais calculadas em cada visada, conforme as equações (13), (14) e (15).

$$\bar{X}_P = \frac{X_{PA} + X_{PB}}{2} \quad (13)$$

$$\bar{Y}_P = \frac{Y_{PA} + Y_{PB}}{2} \quad (14)$$

$$\bar{Z}_P = \frac{Z_{PA} + Z_{PB}}{2} \quad (15)$$

EXEMPLO PRÁTICO

Como exemplo prático, apresenta-se a seguir a aplicação do método na determinação das coordenadas tridimensionais de dois alvos situados nos extremos de uma barra horizontal de invar indicada como tendo 2,000 m de comprimento, conforme apresentado na Figura 3.

Figura 3 Barra horizontal de invar usada na medição de campo.

As coordenadas conhecidas das estações (A) e (B) estão indicadas na Tabela 1.

Tabela 1 – Coordenadas conhecidas das estações (A) e (B).

Estação	X [m]	Y [m]	Z [m]
A	1.000,000	5.000,000	100,000
B	1.031,989	5.000,000	99,152

As direções e os ângulos verticais observados em campo estão indicados na Tabela 2.

Tabela 2 – Direções e ângulos verticais observados em campo.

Estação	Ponto visado	Azimute (Az)	Ângulo Vertical de Altura (β)
A	PE	21° 06' 24"	10° 40' 36"
	PD	22° 55' 17"	10° 33' 33"
B	PE	348° 53' 32"	12° 02' 54"
	PD	350° 54' 12"	12° 08' 19"

Os valores dos parâmetros calculados em função das equações (1) a (15) para o ponto (PE) estão indicados na Tabela 3.

Tabela 3 – Valores dos parâmetros calculados para o ponto (PE).

Parâmetro	Valor calculado	Parâmetro	Valor calculado
a_A	0,354	q	-6,204
a_B	-0,188	d'_A	59,920
b_A	0,917	d'_B	-57,242
b_B	0,960	X_{PEA}	1.021,204
c_A	0,185	Y_{PEA}	5.054,932
c_B	0,209	Z_{PEA}	111,101
$\cos \gamma$	0,852	X_{PEB}	1.021,204
$\operatorname{sen}^2 \gamma$	0,274	Y_{PEB}	5.054,932
ΔX_{AB}	31,989	Z_{PEB}	111,101
ΔY_{AB}	0,000	\bar{X}_{PE}	1.021,204
ΔZ_{AB}	-0,848	\bar{Y}_{PE}	5.054,932
p	11,163	\bar{Z}_{PE}	111,101

As distâncias inclinadas para todos os pontos estão indicadas na Tabela 4.

Tabela 4 – Distâncias inclinadas calculadas.

Estação	Ponto visado	Distância inclinada (d') [m]
A	PE	59,920
	PD	60,603
B	PE	57,242
	PD	56,842

As coordenadas ajustadas para os pontos extremos da barra estão indicadas na Tabela 5.

Tabela 5 – Coordenadas tridimensionais compensadas.

Ponto visado	X [m]	Y [m]	Z [m]
PE	1.021,204	5.054,932	111,101
PD	1.023,203	5.054,872	111,105

De acordo com os valores indicados na Tabela 5, a distância calculada entre os pontos (PE) e (PD) é igual a 2,000 m.

Observação: O exemplo aplicativo foi calculado em planilha eletrônica considerando todos os algarismos gerados. Por isso, pode haver divergências de resultados dependendo do modo de cálculo.

REFERÊNCIA

ALLAN, A. L. Surveying in three Dimensions. Survey Review, 33, Inglaterra, 1996.